Programme de Khôlles - DELACOUR - PTSI - Semaine 33 (10-14/06/2013)

THERMODYNANIQUE (cours + exercices):

• Chapitre 3 : Statique des fluides

I. Qu'est-ce qu'un fluide?

II. Relation fondamentale de la statique des fluides

III. Fluide incompressible et homogène

1) Variation de la pression avec l'altitude

2) Applications

Principe des vases communicants (Ecluse, Siphon)

Mesure de pression : manomètres

Théorème de Pascal (exemple presse hydraulique)

IV. Fluide compressible : cas de l'atmosphère isotherme

- 1) Modèle utilisé pour l'atmosphère
- 2) Variation de la pression et de la masse volumique avec l'altitude
- 3) Hauteur caractéristique H
- 4) Interprétation statistique

V. Poussée d'Archimède

- 1) Calcul direct des forces pressantes
- 2) Théorème d'Archimède
- 3) Applications

Ballon ascensionnel

Iceberg

• CHAPITRE 4 : Premier principe de la thermodynamique

I. Les échanges énergétiques : premier principe de la thermodynamique

- 1) Energie d'un système thermodynamique et principe de conservation
- 2) Les échanges d'énergie (travail, chaleur) au cours d'une transformation
- 3) Le premier principe de la thermodynamique pour un système au repos

II. Le travail des forces de pression

1) Travail élémentaire des forces de pression

Cas transformations monobare, isochore, réversible

2) Représentation graphique

Diagramme de Watt, cycle moteur et récepteur

III. La fonction Enthalpie

1) Définition

Cas d'une transformation isobare réversible et monobare (avec $P_{ext} = P_{initial} = P_{final}$)

- 2) Capacité thermique à pression constante
- 3) Enthalpie du gaz parfait

Relation de Mayer

- 4) Enthalpie d'une phase condensée
- 5) Application à la mesure des transferts thermiques (Calorimétrie)

IV. Application du premier principe à des transformations subies par un gaz parfait

- 1) Les relations à connaître
- 2) Transformation réversible
- a) Rappel sur la notion de réversibilité
- b) Isochore, isobare ou isotherme
- c) Adiabatique : lois de Laplace (à savoir redémontrer)

- d) Cyclique: cycle de Carnot (cf. TD)
- 3) Transformation irréversible (cf. TD)
- V. Application du premier principe à des détentes de fluides
 - 1) Détente de Joule-Gay Lussac
 - 2) Détente de Joule-Thomson (ou Joule-Kelvin)

Connaître les conditions expérimentales de ces détentes ainsi que les conséquences énergétiques.

CHAPITRE 5 : Second principe de la thermodynamique

I. Nécessité d'un second principe

II. Second principe de la thermodynamique

- 1) Enoncé du second principe
- 2) Identité thermodynamique

III. Cas particuliers importants

- 1) Transformation adiabatique réversible
- 2) Transformation réversible
- 3) Transformation cyclique
- 4) Transformation monotherme

IV. Cas d'un gaz parfait

- 1) Entropie d'un gaz parfait
- 2) Détentes d'un gaz parfait
 - a) Détente de Joule-Gay Lussac
 - b) Détente de Joule-Thomson

V. Cas d'une phase condensée

VI. Troisième principe de la thermodynamique